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678-1297 Japan

Received 20 April 1999

Abstract. The temperature dependence of the specific heat in itinerant electron magnets is
discussed by taking into account the effects of both the thermal and the quantum spin fluctuations.
We also propose the form of the free energy consistent with the sum rule of the total spin fluctuation
amplitude. As a check of the validity of the formalism, the Maxwell relation is studied.

1. Introduction

The effect of exchange enhanced collective magnetic excitations on the specific heat has a
long history of theoretical research. It goes back to the paramagnon theories of the exchange
enhanced Landau Fermi liquids paying particular attention to their behaviour at low temperature
(Doniach and Engelsberg 1966, Brinkmann and Engelsberg 1968, Berk and Schrieffer 1966).
On the other hand the temperature dependence of the specific heat has been discussed in the
wide temperature range from the ground state to the paramagnetic phase through the magnetic
transition temperature (Murata and Doniach 1972, Makoshi and Moriya 1975, Hasegawa
1975). Recently the specific heat has renewed its interest in relation to the low-dimensional
itinerant electron systems (Hatatani and Moriya 1995) and the quantum critical phenomena
(Hertz 1976, Millis 1993, Z̈ulicke and Millis 1995, Ishigaki and Moriya 1996, Pfleidereret al
1997).

Although the self-consistent renormalization (SCR) spin fluctuation theory has been
successful in explaining various magnetic properties of weak itinerant electron magnets
(Moriya 1985, Lonzarich and Taillefer 1985), there still remain unresolved problems in its
treatment of the specific heat. First the effect of quantum zero-point spin fluctuations is
neglected from the beginning by assuming that its temperature dependence is very weak. No
convincing arguments have yet been presented. In deriving the temperature dependence of
the magnetic susceptibility, for instance, the self-consistent change of the spin fluctuation
spectrum is found to play important roles. In the SCR theory the effect, however, has not
been reflected on the quantum fluctuation amplitude by assuming its effect is very weak.
A series of the present author’s studies on the spin fluctuation effects have revealed the
significant roles of the quantum spin fluctuation amplitude (Takahashi 1986, 1990, 1992,
1994, 1997a, b, 1998, Takahashi and Sakai 1995, 1998) in deriving the magnetic properties of
itinerant magnets. Theoretical consequences of the necessity of including quantum amplitudes
have been supported by experimental efforts (Yoshimuraet al 1988a, b, Shimizuet al 1990,
Nakabayashiet al 1992). Therefore we have to know how the specific heat is influenced by
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the quantum spin fluctuations. As for another problem, the SCR theory predicts a spurious
steep decrease, like the dip structure, in the temperature dependence of the specific heat of
weak itinerant ferromagnets just above the critical temperature (Makoshi and Moriya 1975).
This seems to suggest the presence of a slight inconsistency in the current SCR formalism of
the specific heat.

The aim of the present paper is to give an answer to these problems mentioned above.
Moreover, in our previous studies on the magnetic properties of itinerant magnetism, no
mention has been given of the explicit form of the free energy. On its behalf, we have bypassed
our discussions based of the sum rule that the sum of thermal and quantum spin fluctuation
amplitudes is almost constant. We propose here a free energy expression that is consistent with
the sum rule. Based on the free energy, we will give the consistency check of our formalism
based on the Maxwell relation of the thermodynamics.

In the next section, after a brief review of our spin fluctuation theory, a free energy
expression is proposed. Based on the free energy, the magnetic entropy is derived. In section 3,
the specific heat formula is derived, and the temperature dependence of the specific heat is
discussed in the critical and the low temperature regions. As a test of the validity of the
present formalism, the Maxwell relation is studied in section 4. The final section is devoted
to discussions.

In what follows the magnetizationMQ with a wavevectorQ is expressed in terms of
the dimensionless parameterσ in units of Bohr magnetonsµB per magnetic atom and the
wavevector dependent external fieldHQ by h in energy units:

MQ = N0µBσ h = 2µBHQ

whereN0 is the number of magnetic atoms in the system. The magnetic susceptibilityχ(Q)

measured in units of 4µ2
B is in the present units given by

χ(Q)/N0 = σ/2h.

2. Free energy expression

Before we introduce a free energy, we briefly summarize the framework of our spin fluctuation
theory for later convenience. In our previous investigations, we have assumed that the total
spin fluctuation amplitude, defined in the paramagnetic phase, for instance, as the sum of the
thermal and the quantum (zero-point) amplitudes by

〈S2
i 〉tot = 1

N2
0

∑
q

∫ ∞
0

dω

π
[1 + 2n(ω)]Im χ(Q + q, ω) = 〈S2

i 〉Z + 〈S2
i 〉T (1)

is almost unaffected by the temperature variation and the presence of the external magnetic
field h. To generalize our treatment, we assume that the magnetic excitations are enhanced
around a wavvectorQ. The spin fluctuation spectrum is then given by

Im χ(Q + q, ω) = χ(Q, 0)

1 +q2/κ2

ω0Q+q

ω2 + 02
Q+q

0Q+q = 00q
α(κ2 + q2) (2)

whereκ2 is the squared inverse magnetic correlation length proportional to the inverse magnetic
susceptibility. The above expression (2) is justified in the smallq, ω region. To be applicable
to both the ferro- (F) and the antiferromagnetic (AF) cases, the exponentα is introduced to
characterize the wavevector dependence of the damping constant0Q+q (α = 1, 0 for F and
AF, respectively). Let us now represent the above spectral form in the parametrized form,

Im χ(Q + q, ω)/N0 = T0

2TAT

ξxα

ξ2 + u2
u = xα(y + x2)/t
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by introducing the parameters,y, T0 andTA as

y = κ2/q2
B T0 = 00q

2+α
B /2π TA = N0q

2
B/[2χ(Q, 0)κ

2]

whereξ = ω/2πT , t = T/T0, x = q/qB andqB is the magnitude of the effective zone-
boundary wavevector. In terms of the dynamical magnetic susceptibility in (2), the thermal
and the quantum components are, respectively, represented by

〈S2
i 〉T =

3dT0

TA
A(y, t)

A(y, t) =
∫ 1

0
dxxd−1+α[ln u− 1/2u− ψ(u)] (3)

〈S2
i 〉Z(y) = 〈S2

i 〉Z(0)−
3dT0

TA
cZy + · · ·

whereψ(u) is the digamma function. They-linear dependence of the quantum amplitude is
verified for three-dimensional cases for smally value andcZ is a constant of the order of unity
determined by the spin fluctuation spectrum. They-dependence of the quantum amplitude
is modified depending on the dimensionality and the nature of magnetism, F or AF. We have
transformed the wavevector summation into the integral form with respect to the reduced
dimensionless wavevectorx = q/qB:

1

N0

∑
q

= d
∫ 1

0
dxxd−1

whered is the dimensionality of the system.
In the presence of the static momentσ = 2|〈SQ〉|/N0, the sum rule has to be slightly

modified. It is replaced by the condition that the squared static moment and the fluctuation
amplitude,

〈S2
i 〉tot = σ 2

4
+ 〈δS2

i 〉Z + 〈δS2
i 〉T (δSi = Si − 〈Si〉) (4)

is totally conserved. We also need to account for the anisotropy of the fluctuation amplitude.
The effect is included by assuming that reciprocals of the squared magnetic correlation length,
κ2 andκ2

z , of perpendicular and longitudinal direction are given, respectively, by

y = κ2/q2
B =

1

TA

h

σ
yz = κ2

z /q
2
B =

1

TA

∂h

∂σ
. (5)

With the use of the sum rule, the temperature dependence of the magnetic susceptibility, i.e.
thet dependence ofy, is obtained by solving

A(y, t)− cZ = A(0, tc) (tc = Tc/T0)

in the paramagnetic phase, for instance. The magnetic equation of state is also obtained with
the use of (4) (Takahashi 1986).

As the free energy consistent with the sum rule we propose the following expression:

Fm(σ, t) = 3

π

∑
q

∫ ωc

0
dω

[
ω

2
+ T ln(1− e−ω/T )

]
0Q+q

02
Q+q + ω2

+
N0TA

4
yσ 2 +1F(y) (6)

whereωc is the upper cut-off frequency. It has explicitt dependence as well as implicitt and
σ dependence through that ofy. The first term represents the contribution from the collective
spin fluctuation modes, that consists of both the effects of thermal and quantum zero-point
fluctuations. The second term represents the magnetic Zeeman energy, i.e. theMH term (in the
case of F) in the usual notation in the presence of the external magnetic field. The reason to
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introduce the last term will be explained below. The differences of (6) from the SCR expression
are the presence of the quantum fluctuations, the term proportional toω/2, in the first term
and the additional term1F(y).

To clarify the reason to include1F(y), let us see the free energy variation against the
parametery. It is given by

δ(Fm/N0) = δy 3

π

∑
q

∫ ωc

0
dω

[
ω

2
+ T ln(1− e−ω/T )

]
∂

∂0Q+q

(
0Q+q

ω2 + 02
Q+q

)
00q

αq2
B

+δy

(
TA

4
σ 2 +

∂1F(y)

∂y

)
. (7)

The above expression is further simplified if we replace the0Q+q derivative of the first term
by that ofω with the use of the relation

∂

∂ω

(
ω

ω2 + 02
Q+q

)
= 02

Q+q − ω2

(02
Q+q + ω2)2

= − ∂

∂0Q+q

(
0Q+q

ω2 + 02
Q+q

)
. (8)

After the partial integration, the variation is given by

δ(Fm/N0) = δy 3

π

∑
q

{
−
[
ω

2
+ T ln(1− e−ω/T )

]
ω0Q+q

02
Q+q + ω2

∣∣∣∣ωc
0

+
∫ ωc

0
dω[ 1

2 + n(ω)]
ω0Q+q

02
Q+q + ω2

}
1

y + q2/q2
B

+ δy

(
TA

4
σ 2 +

∂1F(y)

∂y

)
=
[
TA〈δS2

i 〉tot +
TA

4
σ 2 +

∂1F(y)

∂y

]
δy. (9)

The first term on the top line of (9) is neglected, because the actual frequency dependence of the
spectral intensity should decrease faster than the Lorentzian distribution in the high frequency
range. We hereafter assume theω integration is well behaved in the high frequency region and
the upper cut-off frequency is infinity. The above result indicates that the extremum condition
of the free energy against the variation ofy leads to the sum rule of the spin fluctuation
amplitude. By expanding1F(y) aroundy = 0, we obtain the following relation by the
condition,∂Fm/∂y = 0:

〈S2
i 〉tot = 〈δS2

i 〉tot +
1

4
σ 2 = − 1

TA

1F ′(0)
N0

. (10)

Because we are particularly interested in the exchange enhanced nearly magnetic or weakly
magnetic cases wherey is always very small, the expansion of1F(y) in terms of smally
value is justified. From (10) we see that the total spin fluctuation amplitude is related to the
first derivative of1F(y) around the originy = 0. In this way we are able to derive the self-
consistent equation ofy by the stability condition of the free energy. The presence of1F(y),
supposed to give rise from a self-energy correction of fluctuations, is crucial. The explicitt

andσ dependence of1F(y) is assumed to be very weak.
In the SCR theory, on the other hand, because no explicit correction term1F or

contribution from quantum spin fluctuations are present, they derivative of free energyFSCR,
in the paramagnetic phase, is proportional to thethermalspin fluctuation amplitude given by

1

N0

∂FSCR(t, y)

∂y
= TA〈δS2

i 〉T = 3dT0A(y, t). (11)

As an illustration of the application of our free energy, it is easy to see that the
thermodynamic relation is obtained as follows:

1

N0

∂Fm

∂σ
= 1

N0

(
∂Fm

∂y

∂y

∂σ
+
∂Fm

∂σ

)
= TA

2
σy = h/2 (12)
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that is equivalent to the relation∂Fm/∂M = H in the F case. The first term proportional to
∂y/∂σ vanishes identically due to the extremum condition.

The magnetic entropy is obtained by the first derivative of the free energy with respect to its
explicit temperature dependence, for the implicit temperature dependence throughy vanishes
from the same reason. The entropy is therefore given by

−Sm = ∂Fm

∂T
= 3

π

∑
q

∫ ∞
0

dω

[
ln(1− e−ω/T )− ω

T
n(ω)

]
0Q+q

ω2 + 02
Q+q

. (13)

In the parametrized form, it is represented by

Sm/N0 = −3d
∫ 1

0
dxxd−1[ln

√
2π − u + (u− 1/2) ln u− ln0(u)]

+3d
∫ 1

0
dxxd−1

[
ln u− 1

2u
− ψ(u)

]
(14)

where0(u) is the gamma function.

3. Specific heat

The specific heat is obtained by differentiating (14) with respect to the temperatureT . As the
sum of two contributions, it is given by

Cm/N0t = 3d

(
I1− ∂y

∂t
I2

)
I1(t, y) = 1

t

∫ 1

0
dxxd−1u2{−1/u− 1/2u2 +ψ ′(u)} (15)

I2(t, y) = 1

t

∫ 1

0
dxxd−1+αu{−1/u− 1/2u2 +ψ ′(u)} = ∂A(y, t)

∂t
.

Note that the above result is derived by taking explicit account of the effect of quantum spin
fluctuations. In contrast with the SCR theory, no additional terms proportional to∂2y/∂t2 and
(∂y/∂t)2 are present in (15). They originate from thet dependence of the thermal amplitude in
(11) through the implicitt dependence of the parametery (see the appendix for brief comparison
between (15) and the SCR formula). The spurious dip structure in the temperature dependence
of the specific heat just abovetc results from the term proportional to the second derivative
∂2y/∂t2 (Makoshi and Moriya 1975). They were therefore sometimes dropped simply to avoid
an unfavourable behaviour for the comparison between the theory and experiments (Takeuchi
and Masuda 1979). In order to evaluate the temperature dependence of the specific heat at
general temperature, we need to obtain those ofy and its derivative∂y/∂t . With these values,
the specific heat is numerically evaluated by (15).

Before showing numerical results, we review the temperature dependence of the specific
heat in two particular temperature ranges, around the critical temperature and at low
temperature. From the numerical estimates, we found that the main contribution comes from
the first termI1. The second term proportional to∂y/∂t is always small compared to the first
one. Let us first see the behaviours of the integrand ofI1 as a function ofx. Depending on the
magnitude ofu, it behaves as follows:

xd−1u2[−1/u− 1/2u2 +ψ ′(u)] ∼

xd−1/2 for u� 1
xd−1

6u
= t

6

xd−1−α

y + x2
for u� 1.

It follows from the above expression:
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(i) The integrand always behaves normally aroundx = 0. Especially at finite temperaturet ,
I1 is always finite including the casey = 0, foru is also finite.

(ii) The asymptotic expansion,

u2[−1/u− 1/2u2 +ψ ′(u)] ∼ 1/6u− 1/30u3 + · · ·
to be used in discussing the low temperature behaviour (1� u), is not justified around
x = 0 due to the divergent behaviour of each expansion term. The integrand itself,
however, has to be finite as stated above. Therefore if we evaluate the integral with the
use of the expansion, we need to introduce the lower cut-off wavevector. If we roughly
estimate the lower bound by the conditionu & 1, it is given byt1/(2+α) . x andt/y . x
depending on the conditiony � t2/(2+α) andy � t2/(2+α), respectively.

(iii) When d 6 2 + α, the most dominant term of the asymptotic expansion will show the
divergent behaviour asy → 0.

With these properties in mind, the temperature dependence is discussed below in two
temperature ranges, i.e. around the critical region,y � t2/(2+α), and in the low temperature
limit, y � t2/(2+α), paying particular attention to the behaviour ofI1.

3.1. Specific heat around the critical region

The critical temperature region is characterized by the conditiony � t2/(2+α). Whent is finite,
the integral is always finite even fory = 0. Therefore we can assumey = 0, to see thet
dependence of the critical value of the integral.

If we transform the integration variable fromx to u = x2+α/t with the use of the relation

xd−1 dx = tν−1

2 +α
uν−2 du

I1 can be represented by

I1(t, 0) = tν−2

2 +α

∫ 1/t

0
duuν

(
− ∂

∂u

)[
ln u− 1

2u
− ψ(u)

]
= 1

2 +α
{−tν−2[uν(ln u− 1/2u− ψ(u))]1/t

0 + νtν−2J (ν, t)}

= 1

2 +α
[νtν−2J (ν, t)− 1/12]

J (ν, t) =
∫ 1/t

0
duuν−1[ln u− 1/2u− ψ(u)] (16)

whereν = d/(2 + α) + 1. The upper bound value of the first term of the second line gives
a numerical constant 1/12 from the asymptotic behaviour of the digamma function for large
1/t value. The lower bound value atu = 0 does not contribute irrespective of the nature of
the magnetism (F or AF) or of the space dimensionalityd, for ν is always greater than 1, as
shown in table 1.

Table 1. The dependence ofν on the dimensionalityd for F and AF.

d = 3 d = 2 d = 1

F 2 5/3 4/3
AF 5/2 2 3/2



Spin fluctuation theory of specific heat 6445

Table 2. Numerical values ofC∗5/2 andCν .

C∗5/2 C5/3 C4/3 C3/2

0.080 064· · · 0.562 992· · · 1.006 089· · · 0.653 093· · ·

In the smallt limit, the value ofI1 is estimated as follows:

(2 +α)I1 '


1
3 − 5

2C
∗
5/2t

1/2 for ν = 5/2
1
6 ln(1/t) for ν = 2
νCνt

ν−2 for 1< ν < 2.

The numerical constants,C∗5/2 andCν , are defined by

C∗5/2 =
∫ ∞

0
duu3/2[1/12u2 − ln u + 1/2u +ψ(u)] = πζ(5/2)0(5/2)

(2π)5/2 sin(π/4)

Cν =
∫ ∞

0
duuν−1[ln u− 1/2u− ψ(u)] = πζ(ν)0(ν)

(2π)ν sin(νπ/2)

whereζ(ν) is the zeta function (see table 2 for numerical values ofC∗5/2 andCν).
Before concluding this subsection, let us briefly discuss the contribution ofI2 for d = 3.

Foru� 1, the integral converges rapidly for finitex because the integrand behaves as follows:

1

t
x2+αu[−1/u− 1/2u2 +ψ ′(u)] ∼ 1

t

x2+α

6u2
.

From the wavevector integral around the origin, there appears no divergenty dependence and
its value fory = 0 is given by

I2 = 1

2 +α
t1/(2+α)

∫ 1/t

0
duuµ[−1/u− 1/2u2 +ψ ′(u)] ' 3 +α

(2 +α)2
Cµt

1/(2+α) (t → 0)

µ = 3 +α

2 +α
.

Becausey is proportional to(t − tc)2 aroundt = tc, it follows that

∂y

∂t
∝ y1/2 ∂y

∂t
I2 ∝ y1/2I2.

The second term of the first of equations (15) is therefore negligible aroundtc and the critical
value ofCm is solely determined by theI1 value. On the other hand,∂2y/∂t2 is finite around
the narrow temperature region aroundt = tc. If the term proportional to this factor is present,
it gives a finite contribution, leading to the dip structure aroundtc.

The above result on the critical value of the specific heat is interesting. It is expressed in
the following universal form:

Cm/N0Tc = 1

T0
I1(Tc/T0, 0).

Especially for the three-dimensional AF case, sinceI1(tc, 0) is almost given by 3/2, the limiting
value att = 0, the above relation will be used to estimate the parameterT0 from the value of
the critical temperatureTc, if we can extract the spin fluctuation contribution from the observed
total specific heat.
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3.2. Specific heat in the low temperature region

Let us next deal with the temperature dependence of the specific heat in thet = 0 limit when
y is finite. In the case of nearly itinerant ferromagnets, we can evaluate the integralI1 by
dividing the range of integration by the valuex1 = t/y into two separate regions: the region
(a) 06 x 6 x1, and the region (b)x1 6 x 6 1:

I1 = 1

t

{∫ x1

0
dx +

∫ 1

x1

dx

}
xd−1u2[−1/u− 1/2u2 +ψ ′(u)] = I (a)1 + I (b)1 . (17)

In the region (a),u is always of the order of 1, i.e. 06 u . 1, while in the region (b)u rapidly
increases its magnitude and the asymptotic expansion ofψ(u) is justified. For the nearly AF
case, the asymptotic expansion is justified for whole thex range at low temperature. We can
therefore assumex1 = 0. The former contributionI (a)1 is negligible, of the order oftd−1/yd ,
for the F case, because of the small phase volume. The most dominant expansion term of the
latter is given by the first term, i.e.

I
(b)
1 ∼

1

6

∫ 1

x1

dx
xd−1−α

y + x2
.

In the case ofd > α, since the integrand behaves normally aroundx = 0, the lower boundx1

can be extended to 0, and the integral is estimated as follows:

I
(b)
1 =


[1−√y tan−1(1/

√
y)]/6 for d = 3 +α

(1/12) ln(1 + 1/y) for d = 2 +α
(1/6
√
y) tan−1(1/

√
y) for d = 1 +α.

(18)

On the other hand ford 6 α (d = α = 1, for example),I (b)1 has to be estimated by assuming
the finite lower boundt/y. Ford = α, for instance, it is given by

I
(b)
1 ∼

1

6

∫ 1

t/y

dx
1

x(y + x2)
= 1

12y
ln(y3/t2).

The higher order terms are evaluated as follows. In the ferromagnetic case (α = 1), each
expansion term is evaluated as follows (forn > 1):

1

t

∫ 1

t/y

dx
xd−1

u2n+1
= t2n

∫ 1

t/y

dx
1

x2n+2−d(y + x2)2n+1
' 1

t

(
t

y

)2n+1 ∫ 1

t/y

dx
1

x2n+2−d

'


1

2n + 1− d (t
d−1/yd) for 2n + 1 6= d

(td−1/yd) ln(y/t) for 2n + 1= d.
(19)

Especially in the case of F ford = 3, I (b)1 behaves as follows:

I
(b)
1 =

1

12
ln(1 + 1/y)− t2

60y3
ln(y3/t2) +O(t2/y3)

as predicted by the paramagnon theory of exchange enhanced Landau Fermi liquids (Doniach
and Engelsberg 1966). However, the observation of its behaviour is limited within the extreme
low temperature region,t < y3/2, as was pointed out by Konno and Moriya (1987). In
the nearly AF case each expansion term, 1/u2n+1, only gives a contribution of the order of
(t/y)2n/y1−d/2.

The general temperature dependence of the specific heat of exchange enhanced
paramagnets can now be stated as follows. Wheny is very small, as we decrease the temperature
t , the specific heat will first show the critical behaviour. As we further decrease the temperature,
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Table 3. Characteristic temperature dependence of the specific heat, 3dI1('Cm/N0t).

Ferromagnetism Antiferromagnetism

d t ∼ 0 y ∼ 0 t ∼ 0 y ∼ 0

3 3
4 ln(1/y) 1

2 ln(1/t) 3
2

(
1− π

2
√
y
) 3

2 − 45
4 C
∗
5/2t

1/2

2 π
2 y
−1/2 10

3 C5/3t
−1/3 1

2 ln(1/y) 1
2 ln(1/t)

1 1
4y ln(y3/t2) 4

3C4/3t
−2/3 π

4 y
−1/2 9

4C3/2t
−1/2

0.00 0.01 0.02
t

0.0

1.0

2.0

3.0

4.0

5.0

C
m
/N

0t

Figure 1. Temperature dependence of the specific heatCm/N0t for itinerant weak ferromagnets
for tc = 0.025, 0.05 and 0.1 from the left, respectively. Dashed curves represent results of the SCR
theory (A3) in the appendix for comparison.

its temperature dependence will change into the low temperature behaviour around the
crossover temperature,y ∼ t2/(2+α), if no magnetic transition takes place. The temperature
dependence of the specific heat in both the temperature regions is summarized in table 3.

We show in figures 1 and 2 numerical results of the temperature dependence of specific
heats for F and AF cases, respectively. For comparison, the SCR results are also shown in the
same figures. In the case of exchange enhanced paramagnets, the differences are in general
small at low temperature.

4. Maxwell relation

To test the validity and the consistency of the formalism, the Maxwell relation is studied here.
For the simplicity of the argument, the present discussion is confined in the paramagnetic
phase. In our present units, the free energy variation is represented by

dFm(σ, t) = −T0Sm dt +N0h dσ/2.
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Figure 2. Temperature dependence of the specific heatCm/N0t for itinerant weak antiferromagnets
for tc = 0.01, 0.05 and 0.1 from the left. Dashed curves represent the SCR results.

The Maxwell relation is stated as follows:

− ∂

∂σ

Sm

N0
= TA

2T0
σ
∂y

∂t
. (20)

To begin with, let us recall our sum rule. In the presence of the static magnetic moment,
it is represented by

〈S2
i 〉 =

σ 2

4
+ d

T0

TA
[2B(y, t) +B(yz, t)]

B(y, t) = A(y, t)− cZy
where the functionA(y, t) represents the thermal amplitude defined in (3). By differentiating
the sum rule byt , the derivative∂y/∂t is given by

B ′(y, t)
∂y

∂t
= C(y, t)

C(y, t) = 1

t

∫ 1

0
dxxd−1+αu[1/u + 1/2u2 − ψ ′(u)]. (21)

On the other hand, from the derivative of the entropy (14) inσ we obtain

∂

∂σ

Sm

N0
= d

[
2C(y, t)

∂y

∂σ
+C(yz, t)

∂yz

∂σ

]
= dC(y, t)

(
2
∂y

∂σ
+
∂yz

∂σ

)
. (22)

With the use of theσ derivative of the sum rule, theσ derivatives ofy andyz can be related to
B ′(y, t) as follows.

2B ′(y, t)
∂y

∂σ
+B ′(yz, t)

∂yz

∂σ
= B ′(y, t)

(
2
∂y

∂σ
+
∂yz

∂σ

)
= − σTA

2dT0
. (23)
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If we substitute (23) into (22), theσ derivative of the entropy expression is finally transformed
into the form

∂

∂σ

Sm

N0
= −σTA

2T0

C(y, t)

B ′(y, t)
. (24)

From the comparison of (21) and (24) the Maxwell relation (20) is now verified.

5. Discussions

In the present paper, we have succeeded in the proper description of the magnetic specific
heat of itinerant electron magnets based on the spin fluctuation mechanism. The specific heat
formula is derived consistent with our sum rule of the total spin fluctuation amplitude. The
result is slightly different from the expression of the SCR theory. Because of the disappearance
of the terms proportional to(∂y/∂t)2 and∂2y/∂t2, the spurious dip structure of the SCR theory
just above thetc is absent in our framework. Otherwise, numerical differences between the
two expressions are not very significant.

In our derivation we explicitly take account the effect of quantum zero-point spin
fluctuations. Although the final result (15) does not seem to contain the effect, its neglect
from the beginning is of course not justified. Ishigaki and Moriya (1998) have recently treated
the effect of zero-point spin fluctuations by simply including the effect in the conventional
framework of the SCR theory. No treatment of the specific heat including its effect has yet
been presented.

The significant point of the present derivation is that both the temperature dependence of
the magnetic susceptibility and the specific heat are derived from the same form of the free
energy expression with the use of the extremum condition. It also plays a significant role in
verifying the Maxwell relation between the entropy and the magnetic susceptibility. If there
were terms proportional to(∂y/∂t)2 and∂2y/∂t2 in the specific heat, it would be very difficult
to prove the relation or it would not be possible. The specific heat formula in the SCR theory
is, in this sense, not consistent with its formula for the temperature dependence of the magnetic
susceptibility. The explicit form of the free energy proposed in this study will be helpful in
our future studies of magnetic properties of itinerant electron systems.

Appendix. Specific heat in SCR theory

For the comparison we show below the derivation of the specific heat in the SCR theory. In
the SCR theory, the following form of the free energy is assumed.

FSCR= 3T
∑
q

∫ ∞
0

dω

π
ln(1− e−ω/T )

0q

02
q + ω2

.

By differentiating the above expression with respect to the temperatureT , the magnetic entropy
is given by

SSCR= − ∂

∂T
FSCR= −3

∑
q

∫ ωc

0

dω

π

[
ln(1− e−ω/T )− ω

T
n(ω)

]
0q

ω2 + 02
q

− ∂FSCR

∂y

∂y

∂T
.

(A1)

The first term represents the explicit derivative with respect toT , the same form as our (14).
With the use of (11), the second term is proportional to the thermal amplitudeA(y, t). Therefore
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we obtain the following entropy expression,

SSCR/N0 = −3d
∫ 1

0
dxxd−1[ln

√
2π − u + (u− 1/2) ln u− ln0(u)]

+3d
∫ 1

0
dxxd−1u

[
ln u− 1

2u
− ψ(u)

]
− 3dA(y, t)

∂y

∂t
. (A2)

The specific heat is now obtained by differentiating (A2) with respect to the temperatureT :
i.e. it is given by

CSCR/N0t = 3d

t

∫ 1

0
dxxd−1

(
u− xα ∂y

∂t

)
u{−1/u− 1/2u2 +ψ ′(u)}

−3d

t

∂y

∂t

∫ 1

0
dxxd

(
u− xα ∂y

∂t

)
{−1/u− 1/2u2 +ψ ′(u)} − 3d

∂2y

∂t2
A(y, t)

= 3d

{
I1− ∂y

∂t

∂A(y, t)

∂t

}
− 3d

∂y

∂t

{
∂A(y, t)

∂t
− ∂y
∂t

∂A(y, t)

∂y

}
− 3d

∂2y

∂t2
A(y, t)

(A3)

that differs from our expression by the additional last two terms.
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